Exercises 8.1 - 8.2

4 minute read

Chapter 8. Diagonalization

8.1 Matrix Representations of Linear Transformations

Exercise 8.1.

Let \(T : \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}\) be the linear operator given by the formula

\[\small{T(x_{1}, x_{2}, x_{3}, \hspace{1mm} x_{4}, x_{5}) = (7x_{1}+12x_{2}-5x_{3}, \hspace{1mm} 3x_{1}+10x_{2}+13x_{4}+x_{5}, \hspace{1mm} -9x_{1}-x_{3}-3x_{5})}\]

and let \(B = \{\mathbf{v}_{1}, \hspace{1mm} \mathbf{v}_{2}, \hspace{1mm} \mathbf{v}_{3}, \hspace{1mm} \mathbf{v}_{4}, \hspace{1mm} \mathbf{v}_{5}\}\) and \(B' = \{\mathbf{v}'_{1}, \hspace{1mm} \mathbf{v}'_{2}, \hspace{1mm} \mathbf{v}'_{3}\}\) be the bases for \(\mathbb{R}^{5}\) and \(\mathbb{R}^{3}\), respectively, in which \(\mathbf{v}_{1} = (1, \hspace{1mm} 1, \hspace{1mm} 0, \hspace{1mm} 0, \hspace{1mm} 0)\), \(\mathbf{v}_{2} = (0, \hspace{1mm} 1, \hspace{1mm} 1, \hspace{1mm} 0, \hspace{1mm} 0)\), \(\mathbf{v}_{3} = (0, \hspace{1mm} 0, \hspace{1mm} 1, \hspace{1mm} 1, \hspace{1mm} 0)\), \(\mathbf{v}_{4} = (0, \hspace{1mm} 0, \hspace{1mm} 0, \hspace{1mm} 1, \hspace{1mm} 1)\), \(\mathbf{v}_{5} = (1, \hspace{1mm} 0, \hspace{1mm} 0, \hspace{1mm} 0, \hspace{1mm} 1)\), \(\mathbf{v}'_{1} = (1, \hspace{1mm} 2, \hspace{1mm} -1)\), \(\mathbf{v}'_{2} = (2, \hspace{1mm} 1, \hspace{1mm} 3)\), and \(\mathbf{v}'_{3} = (1, \hspace{1mm} 1, \hspace{1mm} 1)\).

  1. Find the matrix \([T]_{B', B}\).

  2. For the vector \(\mathbf{x} = (3, \hspace{1mm} 7, \hspace{1mm} -4, \hspace{1mm} 5, \hspace{1mm} 1)\), find \([\mathbf{x}]_{\tiny{B}}\) and use the matrix obtained in part 1. to compute \([T(\mathbf{x})]_{B'}\).

  3. Find the factorization of \([T]\) which is the standard matrix for the linear transformation \(T\) using Formula (28) in Section 8.1.

Solution.

  1. v1 = [1 1 0 0 0]'; v2 = [0 1 1 0 0]'; v3 = [0 0 1 1 0]';
    v4 = [0 0 0 1 1]'; v5 = [1 0 0 0 1]';
    nv1 = [1 2 -1]'; nv2 = [2 1 3]'; nv3 = [1 1 1]';
    
    T = [7 12 -5 0 0; 3 10 0 13 1; -9 0 -1 0 -3];
    B1 = [v1 v2 v3 v4 v5]; B2 = [nv1 nv2 nv3];
    format short;
    
    % Find the matrix representation with respect to the bases B1 and B2.
    TB = T*B1;
    TB1B2 = B2\TB;
    
    disp('The matrix representation of T with respect to the basis B1 and B2 is');
    disp(TB1B2);
    

    MATLAB results.

    The matrix representation of T with respect to the basis B1 and B2 is
       34.0000    5.0000  -22.0000  -11.0000   22.0000
       40.0000    2.0000  -40.0000  -25.0000   25.0000
      -95.0000   -2.0000   97.0000   61.0000  -65.0000
    
  2. % Find the coordinate vector of x with respect to the basis B1.
    x = [3 7 -4 5 1]';  x_B1 = B1\x; 
    disp('The coordinate vector of x with respect to the basis B is');
    disp(x_B1');
    
    % Find the coordinate vector of T(x) with respect to the basis B2.
    Tx_B2 = TB1B2 * x_B1;
    disp('The coordinate vector of T(x) with respect to the basis B'' is');
    disp(Tx_B2');
    

    MATLAB results.

    The coordinate vector of x with respect to the basis B is
         9    -2    -2     7    -6
    
    The coordinate vector of T(x) with respect to the basis B' is
     131.0000  111.0000 -228.0000
    
  3. % Transition matrix from B to the standard basis for R^n.
    U=B1;
    
    % Transition matrix from B' to the standard basis for R^m.
    V=B2; 
    
    T=[7 12 -5 0 0 ; 3 10 0 13 1; -9 0 -1 0 -3];
    
    disp('V'); disp(V);
    disp('TB1B2'); disp(TB1B2);
    disp('inv(U)'); disp(inv(U));
    disp('V*TB1B2*inv(U)');disp(V*TB1B2*inv(U));
    disp('T'); disp(T);
    

    MATLAB results.

    V
         1     2     1
         2     1     1
        -1     3     1
    
    TB1B2
        34.0000    5.0000  -22.0000  -11.0000   22.0000
        40.0000    2.0000  -40.0000  -25.0000   25.0000
       -95.0000   -2.0000   97.0000   61.0000  -65.0000
    
    inv(U)
         0.5000    0.5000   -0.5000    0.5000   -0.5000
        -0.5000    0.5000    0.5000   -0.5000    0.5000
         0.5000   -0.5000    0.5000    0.5000   -0.5000
        -0.5000    0.5000   -0.5000    0.5000    0.5000
         0.5000   -0.5000    0.5000   -0.5000    0.5000
    
    V*TB1B2*inv(U)
         7.0000   12.0000   -5.0000         0         0
         3.0000   10.0000         0   13.0000    1.0000
        -9.0000   -0.0000   -1.0000   -0.0000   -3.0000
    
    T
         7    12    -5     0     0
         3    10     0    13     1
        -9     0    -1     0    -3
    

8.2 Similarity and Diagonalizability

Exercise 8.2.

  1. Show that the matrix

    \[A = \begin{bmatrix}-13&\hspace{1mm} -60&\hspace{1mm} -60\\ 10 & 42 & 40\\ -5 & -20 & -18 \end{bmatrix}\]

    is diagonalizable by finding the nullity of \(\lambda I - A\) for each eigenvalue \(\lambda\) with the use of Theorem 8.2.11 in the Section 8.2.

  2. Find a basis for \(\mathbb{R}^{3}\) consisting of eigenvectors of \(A\).

Solution.

  1. % For the exact computation of the eigenvalues, 
    % we use symbolic computation. 
    
    % Set A as a symbolic matrix.
    A = sym([-13 -60 -60; 10 42 40; -5 -20 -18]); 
    
    n = length(A);
    
    % Find the eigenvalues of A by using the command eig.
    eigenvalues = eig(A); 
    
    for j = 1 : n
        fprintf('The eigenvalue lambda is '); disp(eigenvalues(j));
                
        % nullity(lambda*I - A) = n - rank(lambda*I - A);
        nullity = n - rank((eigenvalues(j) * eye(n)) - A);
                
        fprintf('The nullity of (lambda*I - A) is '); disp(nullity);
    end
    
    % Since the geometric multiplicity of each eigenvalue of A 
    % is the same as the algebraic multiplicity,
    % by the Theorem 8.2.11, A is diagonalizable.
    

    MATLAB results.

    The eigenvalue lambda is 2
    The nullity of (lambda*I - A) is      2
    The eigenvalue lambda is 2
    The nullity of (lambda*I - A) is      2
    The eigenvalue lambda is 7
    The nullity of (lambda*I - A) is      1
    
  2. % Since the eigenvalue = 2 of A has the multiplicity = 2, 
    % find two linearly independent eigenvectors of A corresponding to lambda = 2.
    
    %Find a basis for the null space of (2*I-A).
    eigvec12=null((2 * eye(n)) - A);
    
    % Since the eigenvalue = 7 of A has the multiplicity = 1, 
    % find an eigenvector of A corresponding to lambda = 7.
    
    %Find a basis for the null space of (7*I-A).
    eigvec3=null((7 * eye(n)) - A);
    
    p1 = eigvec12(:, 1); p2 = eigvec12(:, 2); p3 = eigvec3(:, 1); 
    
    % By the Theorem 8.2.7, since the eigenvectors corresponding to 
    % distinct eigenvalues are linearly independent,
    % the three obtained eigenvectors {p1, p2, p3} form a basis for R^{3}.
    
    disp('A basis {p1, p2, p3} for R^{3} consisting of the eigenvectors of A is');
    fprintf('p1 ='); disp(p1'); 
    fprintf('p2 ='); disp(p2'); 
    fprintf('p3 ='); disp(p3');
    

    MATLAB results.

    A basis {p1, p2, p3} for R^{3} consisting of the eigenvectors of A is
    p1 =[ -4, 1, 0]
    p2 =[ -4, 0, 1]
    p3 =[ 3, -2, 1]
    

Leave a comment